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 Abstract: The emerging high-speed networks, notably the Video Teleconference Service Traffic (VTST)-based Broadband ISDN, 

are expected to integrate through statistical multiplexing large numbers of traffic sources having a broad range of burstiness 

characteristics. A prime instrument for controlling congestion in the network is admission control, which limits calls and guarantees a 

grade of service determined by delay and loss probability in the multiplexer. We show, for general Semi Markovian traffic sources, 

that it is possible to assign a notional effective bandwidth to each source which is an explici tly identified, simply computed quantity 

with provably correct properties in the natural asymptotic regime of small loss probabilities. It is the maximal real eigenvalue of a 

matrix which is directly obtained from the source characteristics and the admission criterion, and for several sources it is simply 

additive. We consider both fluid and point process models and obtain parallel results. Numerical results show that the acceptance 

set for heterogeneous classes of sources is closely approximated and conservatively bounded by the set obtained from the effective 

bandwidth (EB) approximation. Also, the bandwidth-reducing properties of the Leaky Bucket regulator are exhibited numerically. For 

a source model of video teleconferencing due to Tabatabai et al. with a large number of states, the EB is easily computed. The 

equivalent bandwidths is bounded by the peak and mean source rates, and is monotonic and concave with respect to a parameter 

of the admission criterion. Coupling of state transitions of two related asynchronous sources always increases their EB. 

Keywords: Effective Bandwidth, High Bandwidth, ON/OFF period, Single Source, Multiple Source, Semi Markov 

Process, Video Teleconference Service Traffic.   
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1. INTRODUCTION 

               In statistical multiplexing, which is the core 
of VTST- based B-ISDN, We show that it is possible 
to assign a notional EB to each source which reflects 
its characteristics, including burstiness and the 
service requirements. The sources are given great 
generality; there are no restrictions on dimensions, 
homogeneity or time reversibility. Yet, it is shown 
that the EB is an explicitly identified quantity with 
provably correct asymptotic properties which can be 
obtained from simple and standard computations. In 
numerical evaluations of realistic admission control, 
approximations based on EB perform very well. 
Importantly, the EB of a source is independent of 
traffic submitted by other sources to the multiplexer. 
This fact makes the complexity of computing the EB 
depend only on the source, not system, dimension; it 
also offers the promise of decentralized estimation  
from measurements and enforcement of the EB.  
Specifically, we show that the EB of a Semi  
Markovian source is the maximal real eigenvalue of a 
matrix, derived from the source parameters, network 
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resources and service requirements, with dimension 
equal to the number of source states. Two parallel 
sets of results are obtained: one for a fluid model of 
statistical multiplexing with Markov-modulated 
fluid sources and the other for queues and point 
processes in which the traffic sources are, for 
example, Semi Markov-modulated Poisson (SMMP). 
The results extent the recent and important results of 
Hunt and Gibbens [22], who consider heterogeneous 
ON/OFF fluid sources which alternate between 
exponentially distributed periods of transmission at 
the peak rate and quiescence. Even for the case of 
ON/OFF fluid sources, the results here shed new 
light on origins of key expressions in [22] and also on 
the expressions used there from earlier work by 
Mitra et al.[32] and Kosten[26]. 
 The imminence of new services with a broad 
range of burstiness characteristics and their 
integration through statistical multiplexing has 
focused attention on call admission as the prime 
instrument of rate-based congestion control. For a 
survey of issues, approaches, and analyses, see [35] 
and, for a more recent update,[36]. By preventing 
admission to an excessive number of calls or sources 
to the multiplexer, call admission policies strive to 
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strike a balance between grade of service(as 
determined by delay and cell loss probability, for 
instance)and efficient use of network resources. 
Designs based on peak rates and mean rates are two 
extremes; hence, it is no accident that the EB of a 
source is proven here to be bounded by these two 
rates. Designers have gravitated toward the concept 
of EB because it promises simplicity and the hope 
that it might be a bridge to familiar circuit-switched 
network designs. It should be emphasized that the 
notion of EB is intimately connected with admission 
control and the associated service requirements. 
Consequently, it is determined by the source 
characteristics in conjunction with the admission 
criteria. Hunt and Gibbens [22], Kelly[23], Ahmadi 
etal.[2], Warland and Kesidis [43], Chang[7],and 
Whitt[44] offer different approaches to EB. Kelly 
finds EB for G1/G/1 queues. Guerin et al. 
independently obtain the formulas in [22] through 
insightful interpretations of the results in [32] and 
extend them through heuristics. Both [43] and [7] 
consider the general problem of the existence of an 
EB of stationary and ergodic sources. Kesidis and 
Walrand take a large deviation approach to 
determine the EB, where the admission criteria is 
identical to that in this paper. As is typical with this 
approach, they give the EB in terms of the solution of 
a substantial variational problem; this problem is 
solved only for two-state ON/OFF sources. There is 
an intimate connection between the behavior of tail 
probabilities of queue lengths and EB. Whitt gives a 
detailed treatment of this connection for multiclass 
queues; see also Sohraby[38]. Chang develops 
bounding techniques for tail behavior of queues in 
networks and among other results, explicitly 
connects the bounds for two-state ON/OFF sources to 
the EB in[22].Other approaches to admission control 
and EB based on loss networks are due to Hui [21] 
and Lindberger[28]. 
 In the model of statistical multiplexing 
considered, each fluid source is characterized by (M, 
λ). Where M is the infinitesimal generator of a 
controlling Semi Markov Chain. The source 
generates fluid at the constant rate λs when in state s. 
The mean source rate is denoted by  and the peak 
rate by . The multiplexing buffer is serviced by a 
channel of constant capacity, or rate, c. Let G(B) 
denote the stationary P[X ≥ B] where X represents the 
random buffer content and interpret G(B) to be the 
overflow probability for a buffer of size B. For given 
B and p , let the service requirement be {G(B)≤ 
p},which is also taken to be the admission criterion. 
We think of p as being small, of the order of 10-9. 

 Now consider the statistical multiplexing 

system in which there is only a single-source (M, 

λ).There are no restrictions on the dimensions of this 

source. We show that in the asymptotic regime 

where p  0 and B ∞ in such a manner that 

log p

B
  [- ∞, 0+, the admission criterion is 

satisfied if e < c and violated if   e > c. We call e the EB 

and show that it is the maximal real eigenvalue of the 

matrix [  - M] where R = diag (λ). The EB e depends 

on (M, λ), of course, and on the buffer and overflow 

probability only through . 

 Now suppose that the single source just 
considered is, in fact, the aggregate of K arbitrary 
sources, (M (k), λ (k)) (1≤ k ≤ K). We obtain a result of 
remarkable simplicity: the EB e =  e (k) , where e (k) is 
the EB of the source (M (k), λ (k))computed as if it is a 
single source in the system. 

 In all important respects, the results carry 

over to the framework of queues and point 

processes. The source characterization differs only in 

that λs  is the rate of the Poisson stream which is 

generated by the source when in state s. The EB of 

the single-source (M, λ) in the multiplexing system is 

now the maximum real eigenvalue of 

1 1

1
R M

e e 

 
 

 
for  defined as before. In the 

rest of the paper, we focus on the fluid model and 

handle the queueing model exclusively in Section 7. 
 We show that, in the fluid model, the EB 
decreases monotonically with increasing  from  
at   = - ∞ to  at   = 0. We also show that the 
coupling of state transitions from two asynchronous 
sources with identical infinitesimal generators and 
proportional rate vectors always leads to an increase 
in EB. Examples show that is not true, in general, if 
the rate vectors are arbitrary. These facts are 
important if the pricing of network services is based 
on EB. 
 The following is an observation on the EB 
which may be useful for its estimation from 
measurements. Consider a test bed in which the 
source supplies a buffer which is serviced by a 
channel of variable capacity c. The EB e is that value 
of c for which the asymptotic slope of log G(x) equals 
 . 
 The additive from in the EB of K sources has 
simplifying consequences for the call admission 
problem with multiple heterogeneous classes of 
sources. We want                              
   A (B, p) = {K= (K (1)………….. K ( j) : G K (B) ≤ p). The 
asymptotic result is that A (B, p) is essentially the 
simplex  e (j) K (j) <c, where e  (j) is the EB of a single 
source of class j.  
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This asymptotic result motivates the 
approximation  e (j) K (j) <c to the acceptance set in 
real, nonasymptotic cases. We have tested the 
goodness of this approximation for a variety of 
classes which display different burstiness aspects. 
Note that both the exactly calculated and the 
approximate acceptance sets are not exactly 
simplexes because of the integrality of {K (j)}. It is our 
experience (reported in section 5) that the 
approximation is uniformly good provided that B is 
at least moderately  large and, often, even when B is 
small. Also, we have observed that, importantly, the 
EB approximation provides a conservative bound on 
the acceptance set. 
 Since so much emphasis has been given in 
prior work to two-state ON/OFF sources, it is worth 
noting some of the reasons for considering higher-
dimensional sources. First, as has been noted by 
Tabatabai et al. [41] for video teleconference traffic, 
two-state sources do not capture essential traffic 
features. In fact, Tabatabai et al. used models for 
individual sources which have over 600 states. See 
also Anastassiou et al. [3] for other high-order video 
source models .Second, higher-order models are 
concomitant with the need to design call admission 
in conjunction with traffic monitoring and 
regulation. Mitra and Elwalid [12] have studied 
regulated traffic and its approximate Semi 
Markovian characterization, which, in the case of the 
simplest class of regulators, has dimension one more 
than that of the original source model. Finally, even 
for ON/OFF sources, there is considerable interest in 
the effects of variability of the ON and OFF periods 
[6].Such analysis requires higher-dimensional source 
models. 
 Results reported in Sections 5 and 6 
specifically address the points raised previously. In 
section 6, we show that the EB of a video 
teleconference source model with a large number of 
states one recommended by Heyman et at., can be 
quite easily calculated. Also, in Section 5 we 
numerically examine the bandwidth –reducing 
features of a Leaky Bucket regulator. These results 
are in agreement with Konstantopoulos and 
Anantharaman [25], from where it can be inferred 
that the EB of the output of the Leaky Bucket is 
monotonic with respect to the regulator’s parameter. 
Finally, Section 5 gives a simple source model with 
four states which accommodate hyper exponentially 
distributed ON and OFF periods and also presents 
data on their influence on EB. 

The mathematical developments belong to 
two different categories: the first has to do with the 
analysis of just the single source, and the second with 
the algebraic decompositions which give the additive 
from to the EB of several sources. The essential steps 

in the first category are broadening of the scope of 
the standard eigenvalue problem by introducing an 
inverse eigenvalue problem and investigating the 
growth properties of the maximum real eigenvalue 
with respect to a parameter in the problem. It is to 
the inverse problem that we bring to bear a 
fundamental result due to Cohen [10], [11] and 
Friedland [16] on the convex behavior of the 
maximum real eigenvalue of essentially nonnegative 
matrices with respect to all diagonal elements. In the 
second category, the algebraic theory which gives the 
important decompositions is based on Kronecker 
representations and separability, which has its 
antecedents in the work of Mitra etal.[32], Kosten 
[26], [27], Mitra [29], Elwalid and Stern [14] and Stern 
etal.[40]. 

 

2. PRELIMINARIES 

 This section, which is in three parts, begins 
by giving some basic background facts about the 
statistical multiplexing system. Computation of the 
spectral expansion of the system’s stationary 
distribution involves a standard eigenvalue problem. 
The second part of this section (Section 2.2) points 
out that, in this paper, it will be necessary to broaden 
the scope of the eigenvalue problem by introducing a 
parameter (the channel capacity) and view the 
eigenvalues as functions of this parameter and, also 
to look at the inverse problem, which turns out to be 
an eigenvalue problem as well. Finally, the last part 
of this section (Section 2.3) presents some known 
facts about essentially nonnegative matrices and the 
maximal real eigenvalues critical for the analytic 
development in subsequent sections. 
 
2.1 The Statistical Multiplexing System 

 The statistical multiplexing system consists 
of a buffer which is supplied by various statistically 
independent Semi Markov-modulated fluid sources 
and serviced by a channel of constant capacity, i.e., 
rate c. For our purposes, it will suffice to lump the 
source description into a single aggregate Semi 
Markov-modulated fluid source with state space S 
and irreducible generator M. (In Section 4, it will be 
necessary to consider the detailed structure of M 
implied by the presence of several lower-order 
sources) this aggregate source generates fluid at the 
constant rate λs when in state s (s  S). Let  
λ= . Thus, the aggregate source is 
characterized by (M, λ). We also let the rate matrix R 
= diag (λ). 
 Let  and X denote the stationary aggregate- 
source state and buffer content, respectively. Let the 
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stationary state distribution of the multiplexing 
system be denoted by π (x), where                                     
π (x)  =  and  
     π s (x)  P (  = s, X ≤ x)    (s  , 0 ≤ x ≤ ∞ )          (1)
                     

The governing system of differential equations is  

           π (x) D = π (x) M                 (0 ≤ x ≤ ∞)         (2)  

Where D  R – cI and I are the identity matrixes and 

the diagonal element  Dss = (λs – c) is the drift or rate 

of change in the buffer content when the source is in 

state s. Hence, we call D the drift matrix.  

 The stationary probability vector for the 

aggregate source is denoted by ; hence,              M 

= 0 and ‹  › = 1. The symbol ⟨. , .⟩denotes the inner 

product of vectors and 1 is the vector in which all  

elements are unity. The ergodicity condition is   

                 < c                                  (3) 

 Where the mean source rate is  

                                ⟩                                          (4) 

We denote the peak source rate by , i.e.,  maxs λs. 

To rule out the trivial case in which there is never 

any accumulation in   the   multiplexing buffer, we 

assume that c < . 

Since the stationary state distribution is a 
bounded solution, it has the spectral representation                        

                 
:Re 0

( ) i

i

z x

i i

i z

x a e   


               (5) 

            Where (zi, is an eigenvalue/eigenvector 

pair. Such pairs are solutions to the eigenvalue 

problem 

                                Z  D =  M                (6) 

The eigenvalues with negative real parts are indexed 

as  

      0 > Re z1  ≥ Re z2  ≥ Re z3  ≥<                      (7) 

If z1 is real and z1  > Re  zi  for all i >1, Then z1 is called 

the dominant eigenvalue. 

 In the spectral expansion, the coefficients {ai} 

are obtained by solving a system of linear equations 

which are obtained by the following boundary 

conditions (see, for instance,[29] 

                        Dss > 0    = 0                  (8) 

It is known that the number of such conditions 

exactly equals the number of eigenvalues with 

negative real parts. 

Let the stationary buffer overflow 

distribution be given by G(x), i.e.,  

G(x)     = P (X ≥ x) 

            = 1- π (x),1⟩ 

            
1

,1 iz x

i i

i

a e


                (9)  

If  z1 is the dominant eigenvalue, then 

                G(x)  a1 ,1⟩  
1z x

e as  x  ∞             (10) 

Note that 

                        z I =
log ( )

lim
x

G x

x
              (11) 

 Plots of log G(x) versus x approach linearity as x 
increases, and the slope approaches Z I. 

2.2  Inverse Eigenvalue Problem 

 Consider the eigenvalue problem in (6) 

   ( –cI ) =  M              (12) 

It is convenient to extend the scope of the problem by 
considering c to be a variable parameter and the 
eigenvalues to be functions of c, (c) . The inverse 
problem requires c to be obtained for given z. The 
key fact in this connection is that this inverse 
problem is also an eigenvalue problem. For, writing c 
= g(z), we obtain from (12) 

    g( )  =  A ( )                             (13) 

Where  

     A(z) = R-  M                            (14)      

That is, g(z) is an eigenvalue of the matrix A(z) in 
which z is a parameter. 
 The inverse eigenvalue problem, its maximal 
real eigenvalue and the behavior of this eigenvalue 
as a function of z will be important in the subsequent 
development. 
 

2.3 Essentially Nonnegative Matrices   

A real matrix with nonnegative elements off 
the main diagonal is called essentially nonnegative. 
The matrix A (z) in (14) is essentially nonnegative for 
real and negative z. Since M is irreducible, so is A(z). 
By adding   to A(z), where    

 
1

max ii i

i

M
z

 



 
  

   
   

             (15)
 We obtain a matrix which is nonnegative 
and eigenvalues which are the eigenvalues of A(z) 
shifted by . Thus, the Perron-Frobenius Theory [17], 
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[20], applies to [A(z) +  , and we can infer the 
following for matrix A(z) (z<0).  
Result 1: There exists a real Eigen value g1(z) of the 
matrix A(z) such that to g1(z) can be associated a real 
vector 1,where 1 > 0(element wise) and                                       
mins s < g1(z) < . If g(z) is any other eigen value then 
Re g(z) < g1(z). The eigenvalue g1(z) is simple.  
 The eigenvalue g1(z) is referred to as the 
maximal real eigenvalue. The maximal real eigenvalue 
of an essentially nonnegative matrix need not be the 
eigenvalue with the largest modulus. The upper and 
lower bounds on g1(z) in Result 1 correspond to the 
maximum and minimum row sums of A(z). 
 A result due to Cohen [9], Theorem 1, 
Corollary 2] allows the lower bound in Result 1 to be 
sharpened. Although Cohen’s result is stated for 
nonnegative matrices, it is readily adapted to    A(z) 
(z<0).(Recall from (4) that   is the mean source rate.) 
Result 2: ≤ g1(z). 

We shall also need the following 
fundamental and important result due to Cohen 
[10],[11]and Friedland [16]: 
Result 3: The maximal real eigenvalue of (A+∆) is a 
strictly convex function of ∆, where A is any 
irreducible, essentially nonnegative matrix and ∆ is 
any diagonal matrix which diagonal elements which 
are not all identical. That is, 
    r((1-h)A+h(A+∆)) < (1-h)r(A)+hr(A+∆) (0 <h <1)   (16)
      Where r (.) is the maximal real 
eigenvalue. This result is equivalent to the positive 
definiteness of the Hessian H = (Hij),where               

                              
 2

ij

ii jj

r A
H

 


 
. 

 The antecedents of this result are rich and 
varied. Cohen [11] showed weak convexity by a 
Feynman-Kac formula for the maximal real 
eigenvalue of nonnegative matrices. Friedland [16], 
who was the first to show strict convexity, used a 
variational characterization by Donsker and 
Varadhan for the maximum real eigenvalue. Cohen 
[10] also showed strict convexity by using the Trotter 
product formula and a theorem on log convexity due 
to Kingman [24] as extended by Seneta [37]. 
 Finally, we shall need recourse to a well-
known result on nonnegative matrices [17],[20]. 
Result 4: The maximal real eigenvalue of a 
nonnegative, irreducible matrix increases when any 
matrix element increases. 

This result remains intact when the 
nonnegativity of the matrix is substituted by 
essential nonnegativity.   
 Note that increasing z in A(z) =[R -  M ] has 
the effect of increasing the nonzero off-diagonal 
elements , and  of  decreasing the diagonal elements 

of the matrix. Hence, this result by no means implies 
the monotonicity of the maximal real eigenvalue g1(z) 
with respect to z. This topic, which is of central 
importance in our study, is   examined in the next 
section. 
 
3. SINGLE SOURCE 
 This section on the single source plays a 
pivotal role in this discussion. First, when the single 
source in the multiplexing system is allowed to be of 
arbitrary dimension (as it is in this section), then it 
can be construed to be the aggregate of many lower-
order sources and the many-source problem becomes 
an extension of the single-source problem in which 
the new element is the algebraic exploitation of the 
structure implied by the presence of many sources. 
Such an extension is undertaken in the next section. 
Second, the qualitative properties of the eigenvalues, 
such as monotonicity and convexity, are established 
in Section 3.1. Third, the asymptotic view of the 
admission control problem is introduced in section 
3.2. The result identifying EB of the source as the 
maximal real eigenvalue of a simple matrix is proven 
there. Finally, in Section  3.3 we show that the EB is a 
monotonic increasing and convex function of all 
state- dependent rates of the source. A corollary to 
this result is that, whenever we couple the state 
transitions of two sources having identical generators 
for their controlling Markov chains and proportional 
rate vectors, the effect is to increase the EB.  
 Let the source be characterized by (M, λ) 
where M is any irreducible infinitesimal generator. 
The number of states in the controlling Markov 
chain, which is also the dimension of M and λ is N 
.The system considered in this section consists of this 
source supplying a buffer which is serviced by a 
channel of capacity (rate) c. The admission control 
problem is to characterize sources for which the 
admission criterion {G(B)  p} is satisfied. 
 
3.1 Monotonicity of the Maximal Real Inverse 

Eigenvalue Problem 
 

 We examine the maximal real inverse 
eigenvalue problem (13). Recall that, in this 
problem, the parameter is z and the eigenvalue is 
g(z): 

      g(z)  = A(z)              (17) 

Where  

      A(z) = R –  M              (18) 

Making use of Result 1 of section 2.3, the solutions to 
(17) for z < 0 are indexed thus: 
                     g1(z) > Reg2(z) ≥ Reg3(z) ≥<             (19) 
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The maximal real eigenvalue is 1(z). From Results    
1 and 2  

                ≤ g1(z) ≤  (z < 0)             (20) 
We will find it convenient more than once to 

complement (17) by the form which is obtained by 
multiplying (17) by (-z): 

                (-zg(z))  = [(-z) R +M]             (21) 
The matrix (-z) A (z) on the right side 

remains essentially nonnegative and hence has a 
maximal real eigenvalue, which we denote by r(z). 
Note that r(z)  = -zg 1 (z). 

 The form in (21) is useful for 
obtaining the limiting value of g1(z) as z  0. From 
Result 1 of Section 2.3, we know that g1(z) and r(z) 
are simple; consequently, standard perturbation 
analysis applies [45]. Expanding r(z) and  in power 
series,  

2

0 1 2
 ..,r z r r z r z    and

 
2

0 1 2
 ..,z z z        we obtain from 

(21) r0=0, 0= , and r1 = -  ⟩= - . Hence               

g1(0) = - 
 

0
lim
z

r z

z

 
 
 

 = - 1r  =                    (22) 

When z  - , it is apparent from (17) and (18) that 
g1(z)  . To recapitulate, we have that the maximal 
real eigenvalue g1(z) of A(z) satisfies, for z < 0, 
Proposition 1 
                          g1(0) =  and g1( ) =                   (23)
   
Hence, the bounds in (20) are tight. 
 The effect of decreasing z is to increase all 
the diagonal elements of [(-z) R+M] for which the 
corresponding diagonal elements of R are nonzero, 
while all other diagonal elements and all off-diagonal 
elements are not affected. Hence, it follows from 
Result 4 of Section 2.3 that  

                               < 0                 (z < 0 )             (24) 

 Next, we use Result 3 to establish the 
convexity of r(z). Let z2 < z1 < 0 and 0 < h < 1. In Result 
3, identify A with [(-z1) R +M] and ∆ with ( z1 –z2 ) R 
to obtain  
                  r{ (1-h) z1+hz2 } < (1-h) r(z1) + hr (z2)          (25) 
This condition is equivalent to  

          > 0     (z < 0)                                      (26) 

Proposition 2 The maximal real eigenvalue r(z) of the 
essentially nonnegative matrix  (-z) A(z) =[(-z) Λ +M] 
(z < 0) is a monotonically decreasing convex function. 
Moreover,  r(z)    as z  - , and r (0) = 0. 
 Recalling that r(z) = -zg1(z), it follows  from 
(24) and (26) that, for z < 0, 
            g1(z) + zg'1(z) > 0              (27) 
          2g'1(z) + zg''1(z) < 0              (28) 
 

Proposition 3 The maximal real eigenvalue g1(z) of 
the essentially nonnegative matrix A(z) =  is 
monotonic, decreasing with increasing z, 
           g'1(z) < 0            (z < 0)            (29) 
Proof: From (28), g'1(z) < 0 when  is small and from 
(27), g'1(z) < 0 when  is large. Now suppose that 
there exists some z for which (29) is false. Then, there 
exists intervals in which the sign of  g'1(z) is uniform 
and in neighboring intervals the signs are opposite. 
In particular, there must exist a common endpoint to 
two such contiguous intervals, say z1 (-  < z1 < 0), 
where a local maximum is reached, i.e.,  
                      g'1(z1) = 0, and g''1(z1) ≤ 0             (30) 
Notice that 2g'1(z1) + z1g1''(z1) ≥ 0, which contradicts 
(28).  
 We can also show that g1(z) is a concave 
function ; the proof is omitted. 
 Standard perturbation analysis readily 
yields an expression for g'1(z). In (22), let z be 
perturbed to z +  and consider an expansion in 
powers of , g1 (z + ) = g1(z) +Σ i g1i(z) and similar 
expansions for the left and right eigenvectors. By 
equating coefficients of 0 and 1, we obtain  

               g'1(z) =               (31) 

where (z) and (z) are, respectively, the left (row) 
and right (column) real eigenvectors of A(z) 
corresponding to the eigenvalues g1(z). 
 Notice that when the Semi Markov chain 
with generator M is time reversible, then M is 
essentially symmetric and negative semi-definite. 
Also, the form in (31) immediately shows that g'1(z) < 
0 for z < 0 (g'1(0) is more delicate). This result was 
established by Elwalid and Stern [14]. 
 An ON/OFF source with exponentially 
distributed ON and OFF periods is obtained by 
setting λ1= 0 in the following representation:                   

               M  and     λ = [ λ1   λ2 ]             (32) 

The reader may verify that  

                                 g1(z) =  [(λ1 + λ2 )z ] - 

                             

                                                                                        (33) 

This expression is central to Mitra etal. [32] and 
Kosten [26]. Direct differentiation of (36), the 
procedure followed by Hunt and Gibbens [22], 
confirms that g'1(z) < 0 for z < 0. 

Fig. 1(a) is a sketch incorporating the results 
in Propositions 1 and 3. 
 The key duality between the two extremal 
eigenvalues of interest in the direct and inverse 
eigenvalue problems is now given. 
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Fig 1. (a) The shaded region contains the real                           
parts of the inverse eigen value problem. 

 

(b) The shaded region contains the real parts of all the 
solutions  with negative real parts to the eigen value problem 

     

 

Proposition 4 For c  (  ) the dominant eigenvalue 
z1 is the unique solution in (-  satisfying                                
                                   g1(z1) = c              (34) 

i.e., the dominant eigenvalue is the unique parameter 

in  for which the maximal real eigenvalue is 

c. 

Proof: Since g1(z) is monotonic, strictly decreasing for 
z  [-  ] and takes values between (  ), [36] has a 
unique solution. If z2  is any other real solution to g 
(z) = c, then   z2 < z1. If z2 >z1 ,then 
           c =g(z2)  g1(z2) < g1(z1) = c 
a contradiction. It only remains to show that the 
dominant eigenvalue is real. The proof is similar to 
that maximal real eigenvalue in the inverse 
eigenvalue problem is real and we omit the detailed 
proof. 

Denote the unique inverse of g1 in  [-  ] 
by f1,i.e.  f1( g1(z)) = z ( z < 0). 
 Hence, f1 maps[  ] to [0, - ] and  
  z1 = f1(c)          (  )             (35) 
It is easily seen from an application of the chain rule 
that  
 

 

 

Proposition 5 

                1df

dc
< 0           (  )             (36) 

 i.e., the dominant eigenvalue z1 is a monotonic, 

strictly decreasing function of the channel capacity c 

for c  (  ). 

 These results are incorporated in fig. 1(b). 
 
3.2 Small Overflow Probabilities, Large Buffers 

 
 We now consider the admission control 
problem for an asymptotic regime in which the 
buffer overflow probabilities (p) is small, say of the 
order of 10-9. For the scaling in this asymptotic 
regime to be meaningful, it is of course necessary to 
have large buffers. Enough is already known 
[see(10)] about the qualitative manner in which 
overflow probabilities scale with buffer size (B) to 
arrive at the following natural asymptotic regime, 
which is also the regime considered by Hunt and 
Gibbens [22]. Let B  , and also p  0, in such a 
manner that  

   log p =  B+ O (1)             (37) 

Where   [-  ] is any O (1) parameter. Hence,

log p

B
 . 

Since in this section we are considering a 
system with a single source, the multiplexing is  

nonexistent. The problem here is to characterize 
sources which supply a system with a buffer of size B 
and channel capacity c, and for which the buffer 
overflow probability G(B) does not exceed p in the 
aforementioned asymptotic regime. 
Proposition 6 Let the admission criterion be G(B) ≤ p 

Suppose B   and  p  0 in such a manner that 

log p

B
  [-  ]. If  1g  < c, then the 

admission criterion is satisfied. If  1g  > c, then the 

admission criterion is violated, where g1 ( ) is the 

maximal real eigenvalue of A( ) =  -
1


M.   

Proof:                                      

         From(9),     
1

  ,1 iz B

i i

i

G B a e


               (38)             

Recall that z1 is the dominant eigenvalue, so that              

z1 > Re zi for all i>1 and [see (34)] c = (g1(z1). So  
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  = a1⟨ 1, 1⟩ 
 1z B

e


[1+o(1)] as pB         (39)           

 Now, from Proposition 3, g1(z) decreases as z 

increases ; hence, if g1 ( ) < c , then z1 <   [see Fig. 

1(a)] and 
 G B

p

 
 
 

 0 as B . Therefore, the 

admission criterion is satisfied. Similarly, if g1 ( ) > c 

then z1 >  and 
 G B

p

 
 
 

, so the admission 

criterion is violated.  

This result justifies the use of the term 

‚effective bandwidth ‚for the quantity g1 ( ). We let 

e = e (M, λ; B,p) denote the EB of the source (M,λ) in 

the system for which the admission criterion is G(B) ≤ 

p. That is, 

               e (M, λ; B,p) = g1 ( )             (40) 

Where g1 ( ) is the maximal real eigenvalue of the 

matrix (  - 
1


M) and   =

log p

B
. 

 The fact that B and p determine e only 
through   is a consequential fact which simplifies 
and benefits the design process (see the discussion in 
[22]). Note that the EB is independent of the channel 
capacity. From (23), (29) and (40), we observe that the 
EB decreases monotonically with increasing   from 
the peak source rate  when   = -  to the mean 
source rate    when   = 0. 

 There are several effective numerical 

algorithms for calculating the maximal real 

eigenvalue and the Perron root of nonnegative 

matrices, such as the inverse iteration method (see 

[45] and [15]). Recall from (15), (  - 
1


M + I) is a 

nonnegative matrix for 

                       
1

max ii i
i

M 




 
  

   
  

 

 

The discussion in Section 2.2 on the inverse 
eigenvalue problem indicates an interpretation of g1    

( ) which may be quite useful for obtaining the EB 
from measurements. Consider a testbed in which the   
source supplies a buffer which is emptied by a 
channel of (variable) capacity c. The effective 
bandwidth e is that value of c for which the 
asymptotic slope of logG(x) equals  . 

3.3 Monotonically and Convexity of the EB 
with Respect to Source Rates 

 Here we investigate the influence of the 
source rates λ = ( λ1 , λ2 ,……. λ N ) on the EB of the 
source, e(M, λ; B,p).First, we establish that with M,B, 
and p held fixed, the EB is strictly monotonic 
(increasing with each increasing λi )and also convex 
in ( λ1 , λ2 ,<<. λ N). Next, these properties are used 
to obtain the following in-equality. 
    e(M, λ; B,p) > e(M, λ; B,p)+ e(M, (1-a) λ; B,p)     (41)    
for all  (0,1). The right quantity is the sum of the 
EBs of two sources which have identical controlling 
generator M for their Markov chains, proportional 
rate vectors and are statistically independent, i.e., 
asynchronous. The left quantity is the EB of the 
source obtained by coalescing the two sources by 
coupling state transitions. The next section will show 
that the combined EB of the two asynchronous 
sources is simply the sum of their individual EBs. 
Hence the result in (41) shows that coupling always 
increases the EB. This result is important for 
admission control, traffic shaping and policing and 
in the use of the EB concept for determining prices of 
network services. 
 Since in this subsection M, B, and p are held 
fixed and only λ is varied, it is convenient to write 
for the EB. 
                   e(λ) = g1(λ)              (42) 

It is understand that in this subsection g1(λ) denotes 

the maximal real eigenvalue of [R- 
1


M ], where 

 
 

log p

B
   . Note that e(0) = 0.  

Proposition 7 e(λ) is monotonic, increasing when any 

rate λi  increases. Also e(λ) is convex in  λ1 , λ2 ,<,λ N. 

Proof : Strict Monotonicity follows from Result 4 of 
Section 2.3 since [  - M ] is an essentially 
nonnegative and irreducible matrix, and increasing 
any λi increases  a diagonal element of the matrix . 
Strict convexity follows from Result 3 and a similar 
observation. 
 An immediate implication of the convexity 
of  e(λ) is that, for any two nonnegative (element 
wise ) and non null rate vectors  λ1 and λ2, 
        e (a λ1 +(1-a) λ2) ≤ ae(λ1)+ (1-a)e(λ2)  (0<a< 1)     (43) 
with equality holding if and only if all elements of  
(λ1 – λ2 ) are identical. 
 Yet another implication is  
Proposition III.8 For all  (0,1),                                   

                         e(λ) > e(aλ) + e((1-a) λ)              (44) 
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proof :  

 e(λ) -  e(aλ) =   
1

'

1

0

1g a a d      

      >   
1

'

1

0

1g a d    

     =   1 1g a   

     = e ((1-a ) λ). 

Note that arbitrary splitting of the source with rate 
vector λ into two asynchronous sources with rates λ1 

and λ2 (λ1 + λ2= λ) do not generally preserve the 
inequality in (44). In fact, the following example 
shows that the reserve is not uncommon. Consider 
ON/OFF sources with exponentially distributed ON 
and OFF periods, for which the generator M is given 
in (32). Let the source rate vector λ = (r  r) in which 
case the EB calculated from (33) is r. Now consider 
           λ1 = (0 r) and λ2 =(r o)             (45) 
The reader may verify that 
         e(λ1 + λ2) < e(λ1) + e(λ2)             (46) 

for all    < 
r

 
 . 

4. MULTIPLE SOURCES 

We extend the results in the preceding section to 
multiplexing systems with several sources. First, we 
consider K arbitrary Semi Markov- modulated fluid 
sources and seek a characterization of the sources for 
which the admission criterion {G(B)≤ p} is satisfied. 
As in the last section, the framework is asymptotic 
and the natural scaling in (37) is used. A key element 
of the asymptotic analysis here,as in Section 3.2, is 
the monotonicity of  the maximal real eigenvalue  
with respect to the parameter in the inverse 
eigenvalue problem. The essential new element here 
is the simple additive form of the equation having K 
terms (called here the ‚coupled eigenvalue 
problem‛), which is satisfied by the eigenvalues of 
system. This, together with the accompanying result 
which represents the system eigenvector as the 
Kronecker product of K low-order eigenvectors, 
constitutes a major decomposition of the eigenvalue 
problem. The algebraic theory which gives the 
decomposition is based on Kronecker representations 
and separability, and its antecedents are the results 
in Mitra etal.[32], Kosten [26],[27], Mitra [29] and 
Elwalid and Stern [14]. 

 
 

4.1 Representations 

We suppose that there are K sources 
characterized by (M(k), λ(k))  
(k =1,2<<<K). Assume that for every k, source k has 
N(k) states and the generator M(k) is irreducible. Let (k) 
= diag (λ(k)). S(k) = {1,2,………… N(k) } is the state space 
of source k. 
 The aggregate source is a continuous-time 
Semi Markov chain with state space  
S ={ s/s = (s(1),<. S(k) ), s(k)  S(k), 1≤ k ≤ K }. The states of 
the sources are statistically independent and 
consequently the infinitesimal generator of the 
aggregate source is M, where 
 M = M(1)  I .....  I + I  M(2)  I < I+<.+ <. I M(k)                         
                                                                                        (47)                               
and denotes the Kronecker product. The Result 5 
gives information on definitions and results of 
Kronecker algebra which are used in this paper. The 
standard compact representation of the form in (47) 
is  
          M = M(1)  M(2) << M(k)             (48)
         
a K-fold Kronecker sum. The generator M is also 
irreducible.  
 The stationary probability vector of the 
aggregate source is the Kronecker product of the 
stationary probability vectors of the individual 
sources. That is M = 0 and ⟨ , 1⟩ = 1 where  
          = (1) (2) <.. (k)             (49) 
And (k) M(k) = 0, ⟨ (k), 1⟩ = 1. The system rate 
matrix  =is  
                         (1)  (2) << (k)             (50) 
The system drift matrix D is    D   - cI             (51) 
The ergodicity condition is  < c , where the mean 
rate of the aggregate source  

                    
 k

k


    ,
k k

k

           (52)                                                      

The peak rate of the aggregate source                                                     

                                  

 k

k




                                  (53) 

To avoid trivialities, we assume that c < . 

Result 5 The Kronecker product A B of the matrix 
A of dimension p x q and the matrix B of dimension 
m x n is the matrix of dimension pm x qn obtained by 
replacing each element aij of the matrix A by the full 
matrix aij B. (see, for example, [4].) 

The Kronecker sum of A (n x n) and B(m x 
m) denoted by A B is defined as  

 A B = A  Im  + In B 
Where Im and In are the identity matrices of order m 
and n, respectively. The operation  is associative 
but not commutative, and the same holds true for . 
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The following properties, which are proven 
in [4], [6], and [18], are used in this paper. All 
matrices (vectors) are assumed to be of appropriate 
order. 

1) (A B) (C D) = (AC)  (BD). 
2) Let 1, 2…….. , n be the eigenvalue of the 

matrix A with corresponding eigenvectors 
1, 2,………, n and let 1, 2, ………. , m be 

the eigenvalues of B with corresponding 
eigenvectors 1, 2, …………., m. Then the 
eigenvalues of A  B are  the nm sums i + j 
which corresponding eigenvectors i   j , I 
= 1, 2, <, n and j = 1, 2, <<<, m. 
 

4.2 Decompositions 
 Let us transform the eigenvalue equation z  
D =  M to obtain the form of the inverse eigenvalue 
equation:               c  =  A (z)               (54) 

Where                  A(z)   -  M                                (55) 

A key observation is that A(z), like  and M , also has 
the Kronecker sum form, which the reader is invited 
to verify:  

           A(z) = A(1)(z)  A(2) <<. A(K)(z)        (56) 

Where  A(k) (z)   (k) -  M (k)      (1 ≤ k ≤ K )               (57) 

From the eigenvalue and eigenvector results of 
Kronecker sums which are stated in the Result 5, we 
obtain 
Proposition 9 A necessary and sufficient condition 
for (c,  ) to be a solution to the eigenvalue problem 
in (54) and thus also for (z,  ) to be a solution to the 
eigenvalue problem in (6) is  
          g(k) (z) (k)(z) = (k) (z) A(k) (z)   (1≤ k ≤ K)        (58a)
                 
                              ∑k  g(k) (z)   = c            (58b) 
Where the eigenvector                                                                 
                      = (1) (2) << (K)             (59)                  

We have called (58) the ‚coupled eigenvalue 
problem ‚since it is a system of K eigenvalue 
problems in which the dimensions are only N(k) (1≤ k 
≤ K), and (58b) couples the constituent problems. As 
an alternative to this formal approach, the reader is 
invited to postulate the form for the eigenvector in 
(59) and to verify that the eigenvalue equation is 
satisfied if (58) holds. The remaining necessity part of 
the proof consists of verifying that the right number 
of eigenvalues are  obtained by this procedure. For 
given z and k, there are N(k) solutions to (58a). Denote 
these by  

   k

i k
g z , where i(k)  , 1,2,<<.., N(k)}. 

Hence, (58b) is equivalent to the family of equations 

            
   

1

K
k

i k
k

g z c


               (60) 

 in which all combinations of the subscripts are to be 
considered. 
 
4.3  Maximal Real Eigen value 

 On examining the individual equations 
in(58a), we see that they are in the form of inverse 
eigenvalue problems, which are the subject of 
detailed investigation in Section III-A. It is known 
[see (19)] that, for z < 0, there exists a simple real 
solution g1(k)(z), called the maximal real eigen value, 
such that 
       g1(k)(z) > Re  g2(k)(z) ≥ Re g3(k)(z) ≥ <   (z < 0)       (61) 
Moreover, it has been established in Propositions 
that g1(k)(z) monotonically decreases from (k )to  (k) as  
z increases form - ∞ to 0. 
The analog of Proposition 4 is 
 
Proposition 10 For c ( , ), the dominant eigenvalue 

z1 is the unique solution in  (- ∞, 0) to the equation.  

              
   1 1

1

K
k

k

g z c


               (62) 

i.e., the dominant eigenvalue is the unique parameter 

in A (k) (z) (1 ≤ k ≤ K) such that the sum of their 

maximal real eigenvalue is c. 

 The proof closely parallels the proof of 

Proposition 4. The main items to note: (58) is satisfied 

by all eigenvalues; the dominance of ∑g1(k) (z) for all z 

< 0 as reflected in (61),i.e., 

        
   1

1

K
k

k

g z


  ≥  
   

1

Re
K

k

i k
k

g z


  (z < 0)              (63) 

with equality holding only if  i(k) = 1 for all k; the 

aforementioned monotonicity of  ∑g1(k) (z) and range 

[ , ] for z  [ - ∞,0+. 

 The analog of Proposition 5 also holds has a 
similar proof: the dominant eigenvalue z1 is 
monotonic, strictly decreasing with increasing c for 
c ( , ). 
 
4.4 Asymptotics 

 The asymptotic regime is specified by the 
scaling (37) in which the buffer size B →∞ and the 
buffer overflow probability p → 0 in a manner 
parameterized by  *−∞, 0+. The following 
characterizes K sources which satisfy the admission 
criterion in this asymptotic regime. 
 
Proposition 11 Suppose there are K sources (M(k),λ(k))( 

1 ≤ k ≤ K). Let the admission criterion be G (B) ≤ p. 

Suppose B →∞ and         p → 0 in such a manner that  
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 log p

B

 
 
 

→    *−∞¸0+. If ∑k g1 (k)  ( ) < c, then the 

admission criterion is satisfied. If ∑k g1 (k)  ( ) > c, 

then the admission criterion is violated. Here g1 (k)  (

) is the maximal real Eigen Value of   

                   A(k) ( )=[R(k) –
1


M(k) ]. 

Proof: From (9),G (B) = 
1

,1 iz B

i i

i

a e


 . Here,z1  is 

the dominant eigenvalue, so that z1 > Re zi for all  i >1 

and *see(62)+ ∑g1(k)(z1) = c. Hence,  

         = a1⟨ 1, 1⟩ 
 1z B

e


[1+o(1)] as B→∞            (64) 

Now, from proposition 3, ∑g1(k)(z) decreases as z 

increases; hence, if ∑g1(k)  ) < c then z1 <   and 

 G B

p

 
 
 

→ 0 as  B → ∞ and the admission criterion 

is satisfied. Similarly, if ∑g1 (k)  ) > c then z1 >  and 

 G B

p

 
 
 

→ ∞ and the admission criterion is 

violated.  

Now consider the implications of 
Proposition 11 on the admission control problem in 
which there are, say, J classes of sources. Every 
source of class j(1≤ j ≤ J) is characterized 
by(M(j),λ(j)). The problem is one of determining the set 
of all K=(K(1),K(2),………., K(J)) for which the admission 
criterion GK(B) ≤ p is satisfied, where K(j) is the 
number of sources of class j admitted to the 
multiplexing system. 

 
Corollary., Let A(B,p) = { K : GK(B) ≤ p} . Also let 

   ( ) ( )

1:  j j

j

K g K c
 

 
 

    

    ( ) ( )

1: j j

j

K g K c   

Where g1(j)(  ) is the maximal real Eigen value of         

[  (j)- 
1


M(j)].Then A  A(B,p) . 

 In applications of these asymptotic results, 
we approximate                                                  A(B,p)  
{K: g1(j)(  )K(j)< c}. Then, except for effects due to 
the integrality of K, the acceptance set in K space is a 
simplex. The goodness of this approximation is the 
subject of numerical investigations in the next 
section. 

Fig 2. The acceptance set for two classes of ON/OFF 

sources with p=2.06x10
- 9

 

 

Fig 3. The acceptance set when the mean ON/OFF periods of both 

classes are half of those in Fig 1. 
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Fig 4. The acceptance set for two classes of sources with 

equal EBs and different mean and peak rates; p=2.06x10
- 9 

 

 

 

5. NUMERICAL STUDIES 

 In the previous sections, we showed that the 
EB of a source is a clearly defined and easily 
computed quantity. In this section, we numerically 
investigate three main issues: 

1. The accuracy of the EB when used in 
admission control and its sensitivity to 
source burstiness. 

2. The effect of the variability of the ON and 
OFF periods on the EB. 

3. The function of the Leaky Bucket regulator 
as a bandwidth- reducing device. 

Figs. 2-4 address issue 1. Fig.2 displays the 
boundaries of the acceptance region for two source 
classes as computed from exact analysis and from 
using the EB approximation. Similar plots were 
obtained by Hunt and Gibbens [22]. The sources of 
both classes are ON/OFF with exponentially 
distributed ON and OFF periods. See (32) for an 
explanation of the source parameters, which are as 
follows: 
Channel capacity c = 8.43 
  1        2   =    

Class 1                1.0 1.0            0    1.0 
Class 2  1.0 2.0   0    1.0 
 

Fig 5. Four-state source model 
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Fig 6. Effect of  on ON and OFF periods, α = 0.4, β = 1, 


= 1 

; p=2.06x10- 9   

 

Hence the ON periods of the second class are only 
half as long. The buffer overflow probability   p = 2.06 
x 10-9. The buffer size B is varied: B = 1,5,10 which 
gives   = -20, -4, and -2, respectively. We point out 
that these plots differ from those in [20] in that p is 
constant; while in [22] p is varied with B to keep   
constant. Also, in Figures 2-4 the data points are 
obtained by calculating the maximum acceptable 
value of K2 for each value of K1. 

 The figures observe that the EB 
approximation provides a conservative bound on the 
acceptance set. 
 In Fig. 3, the jitteriness of the sources is 
doubled, i.e., their mean ON and OFF periods are 
halved. Channel capacity, c= 8.43, as in Fig.2. The EB 

of each source decreases, resulting in an increase in 
the acceptance set. In Fig. 4, the two source classes 
have different mean and peak rates but the same EB. 
The parameters are the same as for Fig. 2, except that 
for class 2 the peak rate = 1.05, 1.19, 1.29 for B=1, 5, 
10, respectively. The symmetry in the plots confirms 
that EB provides an effective basis for admission 
control, while mean and peak source rates by 
themselves do not. 
 In the previous figures, the ON and OFF 
periods were assumed to be exponentially 
distributed. It is of interest to investigate the 
dependence of the EB on the variability of the ON 
and OFF periods. To generate distributions with a 
squared coefficient of variations larger than 1, we 
have chosen the hyperexponential distribution with 
balanced means. We consider a four-state source 
model [see Fig.5], where states 1 and 2 correspond to 
the OFF period and states 3 and 4 to the ON period. 
This model allows us (see the equations 
accompanying the figure) to vary the squared 
coefficient of variation of the OFF and ON periods, 

(OFF) and (ON), while keeping their means 
constant. In fig. 6, the EB of a source having 
parameters = 0.4,  = 1, and  = 1is plotted as a 
function of (ON), for various values of (OFF). 
We observe that the EB is sensitive to (ON), and is 
less sensitive to (OFF). Fig .7 displays similar 
behavior for a source with shorter ON and OFF 
periods.  
 In the context of rate-based congestion 
control, call admissions is necessarily complemented 
by traffic monitoring and regulation. The Leaky 
Bucket device can act as a traffic policer as well as a 
traffic shaper [5], [9], [12], [25], [30]. We consider the 
simplest form of the Leaky Bucket, which consists of 
a token pool of size BT supplied with tokens at rate . 
In the model at hand, if an arriving cell finds the 
token buffer empty, it is marked, allowed into the 
network and treated thereafter as a low priority cell. 
We now examine the effect of the Leaky Bucket on 
the EB of a two-state ON/OFF source. To apply the 
results derived in this paper, we model the output 
stream of unmarked, i.e., high priority, cells leaving 
the Leaky Bucket as a three- state Semi Markov-
modulated source as depicted in Fig..8 (see[12] for a 
detailed derivation). Fig. 9 plots EB versus BT  of 
different values for r and illustrates the bandwidth –
reducing property of the Leaky Bucket. We let the 
unit of time be the mean length of the ON period and 
the unit of information be the amount generated by 
the source during an average ON period. Thus, the 
source peak rate and mean rate are equal to 1 and 
0.286 units of information per unit of time, 
respectively. It is seen that the EB decreases from a 
maximum value equal to the source’s original EB to a 
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minimum value as BT is decreased from five units of 
information to 0. The reduction in EB is alternatively, 
due to the increase in marking probability PM which 
increases as BT decreases, as shown in Fig. 9.  

Fig 7. Effect of  on ON and OFF periods, α = 2, β = 5, 


= 1 ; 

p=2.06x10- 9   

 

Fig 8. Approximation Markovian characterization of unmarked 

cell stream from Leaky Bucket regulator 

 

 

Fig 9. Effect of the Leaky Bucket regulator on EB α = 0.1, β = 

0.25, 


= 1 ; p=2.06x10- 9 .                                                                                      

Token rate r = 0.41, 0.35, 0.32 for regulator’s ρ = 0.7, 0.8, 0.9 

respectively 

 

6. EFFECTIVE BANDWIDTH OF A VIDEO 
TELECONFERENCING SERVICE 
TRAFFIC SOURCE. 

 In this section, we demonstrate that a  
realistic traffic source derived from measurements 
has an EB which is easy to calculate. The model, 
which is due to Tabatabai et al. [41], is for traffic from 
video teleconferencing services such as would be 
provided over VTST- based networks. Beginning 
with a 30-minute sequence of video teleconference 
data, the authors fit a variety of autoregressive and 
Semi Markov chain models and conclude that the 
only models sufficiently accurate for use in traffic 
studies is a multistate Markov chain model. A 
Version of this model which they recommend is the 
discrete autoregressive model DAR (1). While this 
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model is structurally simple, the number of states is 
about 600 in the version which is used in their 
simulation experiments. We consider the continuous 
– time version of the DAR (1) model and show that 
its EB is readily calculated, even when the number of 
states is large. 
 In our model, the infinitesimal generator  
                 M = 〈〉 f]              (65) 
Where. 〈〉. denotes the outer product of vectors and 
in this case 1〈〉 f is a matrix in which every row is 
identical to f. The form in (65) is obtained by 
identifying the transition matrix  P = [ I + (1- ) 1〈〉 f] 
in [41] with exp (M△), where  is a first- order 
autocorrelation coefficient, f is a probability vector, 
i.e., f ≥ 0, 〈 f, 1〉 = 1, which is derived from the 
negative binominal distribution, and △ is a small 
parameter associated with the time discretization. 
Since P = exp (M△)  I+ M△, (65) is obtained on 
identifying with (1- )/△. The model in [23] implies 
a rate vector  for our source with a linear 
dependence of λi on i. However, it will be equally 
convenient to let   be arbitrary.  

The EB of the source, e(M, ;B,p), is the 

maximal real solution e of the equation  

1


 = 0                                       (66)                                      

where
log p

B
  . To evaluate the determinant, we 

make use of the identity 

  =  (1-〈aA-1,b〉)             (67) 

and obtain 

  
1


=

i

i

e





  
   

  
     

1 i

i
i

f

e



 


 
 
 
   
 

                                             (68) 

Hence, the EB is the maximal real solution to the 

equation 

                         i

i
i

f

e



 


 
   = 1             (69)     

Suppose that 1 < 2 < <..< N-1 < N. The function on 
the left is monotonic, increasing in each of the 
intervals (-∞, 1 +   , ( 1 +  , 2 +   ),<., 
( N-1 +  , N +  ), ( N +   ,∞); the function 

approaches ± ∞ as the singularities at ( i +   ) are 
approached from the left and right, and approaches 0 
as e  -∞ ans as e  ∞. Hence,  
 
Proposition 12 The EB of source (M,  ), where M is 
given in (65), is the unique real solution e in the 
interval (( N-1 +   , N +   ) to (69). 
 The use of this result in evaluating the effect 
of smoothing on the statistical multiplexing gain is 
the subject of current investigations. 

 

7. EFFECTIVE BANDWIDTH OF SEMI 
MARKOV MODULATED POISSON 
SOURCES 

 In this section, we show that there are 

closely related concepts and arguments that apply to 

queues of jobs or packets. This parallelism between 

fluid flow and point processes has been noted before 

in [13] and [40], in particular for the decompositions 

of the eigenvalue problem. We shall show here that 

the parallelism also extends to the inverse eigenvalue 

problem, the qualitative properties of the maximal 

real eigenvalue as a function of the parameter of the 

problem and the concept of EB. 

    We begin, as in Section 3, with a single source 

(M, ), where M is the irreducible infinitesimal 

generator of a controlling Semi Markov chain. The 

source emits packets in a Poisson stream at rate s 

when in state s (s  S). Let  = diag ( ). The packet 

length is exponentially distributed. The server is the 

output channel to the multiplexing buffer and has 

constant capacity or rate. The rate parameter  is the 

ratio of the channel capacity to the mean packet 

length. The vector , the mean source rate  and the 

peak rate  are all defined as in Section 2.1. The 

ergodicity condition is  < . 

    Let the stationary state distribution of the 

multiplexing system be denoted by                        p(n) 

=  {ps(n) }, where  

          ps(n) =P (Σ = s, X= n)   (  ; n = 0, 1,<)        (70)                             

The balance equations are 
   0 = p(n) [M- ] + p(n+1)           (n = 0)      
       =p(n-1)  +p(n)[M- - I] + p(n+1)    (n ≥ 1)      (71) 

The spectral representation of the solution to the 

balance equations  p(n) =
: 1

n

i i i

i z

a z


  (n  0)            (72)         

where (zi, i) is an eigenvalue/eigenvector pair 

satisfying the eigenvalue equation 
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     =0        (73)    
Let the eigenvalues with modulus less than unity be 
indexed so  
                                   1 >  ≥  ≥ <             (74) 
The coefficients {ai} in (72) are obtained from the 
normalization conditions Σ p(n) = . On substituting 
the solution in (72), we obtain 

        p(n) =  [I- R] Rn         (n ≥ 0)             (75)      
where  R  -1Z                                            (76) 
Z = diag (z1, z2,<) and  is the matrix with rows 

1, 2,< . From (75), 
         G(n)  P (X ≥ n) = ⟨ n,1⟩         (n ≥ 0)        (77) 
Equation (75) is also the well-known matrix-
geometric from due to Neuts [33], who has shown 
that the Rate matrix R has spectral radius less than 
unity and is the minimal nonnegative solution to a 
matrix quadratic equation. Hence, R has a Perron 
root, the eigenvalue of maximum modulus which is 
real, simple, and in (0,1). From the spectral expansion 
of R in (76), we infer that the Perron root is z1,the 
system eigenvalue[see (73) and (74)]. Hence z1 is real, 
simple, and in (0,1). Since z1 >  for all i >1, z1 is 
called the dominant eigenvalue.  
 The inverse eigenvalue problem is obtained 
as in Section II- B. On writing g(z) =  
                  g(z)  =  A(z)              (78) 

Where  A(z)                (79) 

A(z) is irreducible and essentially nonnegative for 
z (0,1). Let g1(z) be its maximal real eigenvalue. We 
have proven  
 
Proposition 13  

1) g1(z) ~ /z as z approaches 0 from the right, 
and g1(1) = . 

2) g'1(z) < 0 for z (0,1). 
3) The dominant eigenvalue z1 is the unique 

solution in (0,1) satisfying g1(z1)=   
We next examine the admission criterion {G(B) ≤ 
p} in the asymptotic regime of large buffers B 
and small overflow probabilities p. Our result is 
 

Proposition 14 Suppose B  ∞ and p 0 in such a 

manner that 
log p

B
  . If  1g e < , 

then the admission criterion is satisfied. If  1g e > 

, then the admission criterion is violated. 

Where  1g e is the maximal real eigenvalue of

1 1
( )  

1
A e R M

e e



 
 


. 

 On the basis of this result, the EB of the 
single source 

             1g e                    (80) 
For a two-state SMMPP source with (M, ) defined in 
(32), 

                 g1(z) = 1 21 1

2 1 2z z

     
  

 

 

2

1 2 1 2 1 2

2
4

1 1z z z z z

          
                               

                                                        

                            (81) 

We next investigate, as in section 4, the decomposition 

of the expression in (80) When the source (M, ) is the 

aggregate of K sources (M(k) , A(k)) (1≤ k ≤ K). The key 

coupled eigenvalue problem in (58) carries over, with 

A(k)(z)   (k) + (k). With the benefit of proposition 

13, we have proven 

Proposition 15 Suppose there are K sources ( (k) (k)) 

(1≤ k ≤ K) supplying the multiplexing buffer. Let the 

admission criterion and asymptotic regime be as in 

proposition 14. If 
   1

k

k

g e < , then the  

admission criterion is satisfied. If 
   1

k

k

g e  >  

then the admission criterion is violated. Where 
   1

k
g e is the maximal real eigenvalue of

   k
A e . 

Table 1 

The number of admissible sources obtained by the EB 

approximation and exact calculations 

_____________________________________ 

             Case 1         case 2 

_____________________________________ 

         Ke       K
*        

Ke      K
*                

50       12       12  10         11 

100     24       24  21 22 

150     36       36  32 33  

200     48       49  43 44  

250     60       61  54 56 

300     73       74  65 67 
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 Thus, the simple additive structure to the EB 

of K sources exists in both the fluid and queuing 

frameworks. All the simplifying consequences 

discussed in Section 4.4 carry over. 

 We give numerical results on the use of the 

EB approximation to the admission control of a 

single class of two- state SMMPP sources. We 

consider two cases; Case1 and case2. The source in 

the two cases have the same mean rate (  = 3.33) and 

different burstiness characteristics. In both cases, B = 

200 and p = 10-7, which gives e  = 0.9226. The source 

parameters and EB e = e (M,  ; B, p) of the sources as 

computed by (80) and (81) are given below. 

In Table I, we compare the admissible 
number of sources Ke, computed by EB 
approximation with K*, obtained by exact 
calculations [36]. The comparison is carried out for a 
range of values of     the service rate. 

                           1             2 =               e 

Case 1 1  1 0  6.667    4.110 

Case 2  1 4 0            16.667        4.568 

 The main observation in Table I is that  K* is 
tightly and conservatively bounded by Ke  for 
sufficiently large B. Also, the admissible number in 
Case 1 is consistently larger than that of Case 2.This 
is because sources of Case 2 are more bursty.  
 In recent work [31], we have extended the 
results of this section to phase renewal  

(PH renewal) processes [33]. 
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